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Connections between Wiener index and matchings
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Let T be an acyclic molecule with n vertices, and let S(7) be the acyclic molecule
obtained from T by replacing each edge of T by a path of length two. In this work,
we show that the Wiener index of T can be explained as the number of matchings with
n — 2 edges in S(T'). Furthermore, some related results are also obtained.
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1. Introduction

The study of various molecular-graph-based structure descriptors, so-called
“topological indices” (see, for example, [1-3]), has been undergoing rapid expan-
sion in the last few years. Without question, the Wiener index is one of the best
known and most examined among them. The Wiener index of an acyclic mole-
cule T with the vertex set V(T), denoted by W(T), is defined as

W)= > dr(uv), (1)
{u,v}CV(T)

where dr(u, v) is the distance between vertices # and v in T.
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The name Wiener index or Wiener number for the quantity defined in (1) is
usual in chemical literature, since Wiener [4] in 1947 seems to be the first person
that considered it. Wiener defined it in a slightly different yet equivalent way. He
used it to describe the variations in the number of physicochemical properties of
alkanes [4-8]; the definition of the Wiener index in terms of distances between
vertices of a graph, such as in (1), was the first given by Hosoya [9].

Suppose u is a vertex of T. The partial Wiener index was introduced in [10-
12] as follows:

W(T.u)y= > dr(u,v). )

veV(T)

It is well known [9] that the formula (1) is equivalent to the following
formula:

W(T) = ni(e)nale), 3)

where e = (1, v) is an edge of T, and n(e) (resp. ny(e)) is the number of verti-
ces of T lying closer to u than to v (resp. lying closer to v than to u), and the
summation is over all edges of T.

Based on the formula (3), it is natural to generalize the definition of W(T)
as follows.

Let U be a subset of the edge set E(T) of an acyclic molecule T, and
let T — U be the acyclic graph obtained from 7T by deleting all edges in U.
Obviously, if [U|=i then T — U contains exactly i + 1 components, denoted by
U(T),U(T»), ..., U(Ti;1). Denote the number of vertices of U(T;) by n;(U) for
j=1,2,...,i 4+ 1. Define the generalized Wiener indices W;(T) as

W)= Y m@naU)nip(U) )
UCE(T),|U|=i
fori =0,1,2,...,n — 1, where the summation ranges over all subsets of E(T)

with i elements.

Obviously, Wo(T)=n, Wi (T) equals the Wiener index, and W,(T) is the
modified hyper-Wiener index, which was introduced by Gutman [13]. It was
demonstrated that W,(T') has certain advantages over the original hyper-Wiener
index introduced in Randi¢ [14].

A set M of edges of an acyclic molecule T with n vertices is a matching if
every vertex of T is incident with at most one edge in M; it is a perfect matching
if every vertex of T is incident with exactly one edge in M. We use the notation
v € M to mean that the vertex v is incident with some edge in M, and v ¢ M shall
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mean that the vertex v is not incident to any edge in M. For j=0,1,..., [n/2],
the weighted j-matching number of T is defined to be

mr(j) =Y []dw, (5)

M veM

where the summation is over all matchings with j edges of T and the product
ranges over all vertices which are incident with no edge in M, and d(v) is the
degree of the vertex v of T. Denote by m(T,i) the number of matchings of G
with i edges. We set m(T, 0) = 1 by convention. Denote by Z(T) the number of
matchings of T, that is,

Z(T) = m(T,0) +m(T, 1) + - +m (T, L%J) .

The number of matchings of T is also called the Hosoya index (see Hosoya [9]).

The following interesting result was communicated around 1990 indepen-
dently in several papers [15-18]:

—1 1
W(T) = ZA— (6)

where T is an acyclic molecule with n vertices, A; > A, > --- > A, are the
non-zero Laplacian eigenvalues of 7.

The above result connects the Wiener index (a quantity defined on the basis
of graph distances) and matrix eigenvalues. The possible chemical implications
of (6) were discussed in [19,20]. On the other hand, by using algebraic method,
Chan, Lam and Merris [21] arrived a related result, namely they expressed W (T')
as a linear function of a hook immanant of the Laplacian matrix of 7. This
algebraic result was used to show that W(T') is formally related to other graph
invariants of interest in chemistry [22]. It leads to a new interpretation of the
Wiener index as a weighted sum of matchings in the molecule as follows:

[n/2]

W) =3 | X xmr() +2n =1 |, @)
Jj=0

where x3 is an irreducible character of the symmetric group indexed by a parti-
tion A = (3, 1"73) of n and by [19] we have x3(j) = [(n 2j—D(n—=2j-2)—
2j], and m7(j) equals the weighted j-matchings number of T defined in (5).

In addition to the formulas (1), (3), (6) and (7), many other formulas com-
puting the Winer index of an acyclic molecule were found (see, for example, ref.
[2, 3, 23-26]).

In this work, we mainly prove that if 7 is an acyclic molecule with n ver-
tices then W;(T) can be expressed in terms of the number of some matchings
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of a related acyclic molecule S(7) with 2n — 1 vertices for i = 0,1,2,...,n — 1.
Particularly, the Wiener index W(T) of T equals m(S(T), n—2) and the modified
hyper-Wiener index W,(T) of T equals m(S(T),n — 3).

2.  The subdivision graph of an acyclic molecule

Let T be an acyclic molecule with the vertex set V(T') = {vy, vs, ..., v,} and
the edge set E(T) = {ey, e, ..., e,_1}. The subdivision graph S(T) is defined as
the acyclic molecule obtained from T by replacing each edge ¢ = (1, v) of T by
a path uev of length two (figure 1(a) and (b) illustrate the procedure construct-
ing S(T) from T). Hence the vertex set of S(T) is V(T) U E(T). The vertex set
of T can be naturally regarded as a subset of the vertex set of S(T).

Let B = (bij)nxm—1) be the incidence matrix of T, where

1 if €; = (viv N)7
bij = .
0 otherwise.

For the acyclic molecule T showed in figure 1(a), we have

ool

Il
S o o = =
S © = = o

0
1
0
1
0

—_— = o O O

It is well known that the adjacency matrix of S(7), denoted by A(S(T)),
has the following form (see [27]):

0 B
A(S<T)):<BT 0),

3
3
e, %62
O O———=0O

O
1©19%4e 5 1 € 2 € 4 € 5
(a) (b)

Figure 1. (a) An acyclic molecule T. (b) The corresponding molecule S(7) of T.
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where BT is the transpose of T. Particularly, we have
BBT = D + A, (8)

where D = diag(d,, da, ..., d,) is the diagonal matrix of vertex degrees of 7' and
A is the adjacency matrix of 7. We call D — A the Laplacian matrix of 7. The
Laplacian characteristic polynomial of 7 is u(T, x) = det(xI, — D + A). It can
be written in the coefficient form as:

n

w(T, x) =Y (=DHrex"™, )

k=0
where ¢, =0,¢,_1 =n and ¢y = 1.

According to the Kel’mans theorem [20, 27, 28], the coefficients c¢;s of
u(T, x) satisfy the following:

Cnk—1 = Wi(T) (10)
for k=0,1,....n—1.

3. The generalized Wiener indices and matchings of S(7)

Let T be an acyclic molecule with n vertices. Then S(7T') is an acyclic mol-
ecule with 2n — 1 vertices.

Theorem 3.1. The generalized Wiener indices W, (T) of T and the numbers of
matchings of S(T) with n — k — 1 edges are equal for k =0,1,2,...,n — 1, that
1S,

Wi(T) =m(S(T),n —k — 1).

Particularly, the Wiener index W(T) of T equals m(S(T), n—2) and the modified
hyper-Wiener index W,(T) of T equals m(S(T),n — 3).

Proof. Let B = (bjj)nxn-1) be the incidence matrix of 7. Then the adjacency
matrix of S(7") has the following form:

0 B
A(S(T)) = ( . ) .
B" 0

Hence the characteristic polynomial ¢ (S(T), x) of S(T) satisfies:
¢ (S(T), x) = det(x I, — A(S(T)))

x1 —B 1
= det g = —det(x*1, — BB").
—BT xln_1 X
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By (8), we have BBT = D + A. Hence we have

1 1
#(S(T), x) = —det(x’l, — BBT) = — det(x*I, — D — A). (11)
X X
Note that, since T is an acyclic molecule, it is a bipartite graph. Hence we have
(see [27])
u(T, x) = det(xI, — D + A) = det(xI, — D — A). (12)

By (11) and (12), we have
P(S(T), x) = %u(T, x?). (13)

Since S(T) is an acyclic molecule, it is well known that the characteristic poly-
nomial ¢(S(T), x) can be expressed as [27]

n—1
¢(S(T), x) =Y (=Dm(S(T), kx>, (14)
k=0
where m(S(T), k) denotes the number of matchings of S(7T) with k edges.
From (9), (10), (13) and (14), we have

Wi(T) =m(S(T),n —k —1).

Hence the theorem has been proved. m]

From the above result, we have the following:

Corollary 3.1. Let T be an arbitrary acyclic molecule with n vertices. Then the
number of matchings of S(T) with n — 1 edges is n, which is independent of the
structure of T.

Corollary 3.2. Let T be an arbitrary acyclic molecule with n vertices. Then the
Hosoya index of S(T) equals (—1)"u(T, —1), that is,

n—1

Z(S(T)) = (=D)"u(T, =1) = )~ Wu(T). (15)

k=0

Now we consider the relation between the partial Winer index of an acyclic
molecule and the matchings of S(T).

Lemma 3.1. If T is an acyclic molecule with n > 2 vertices, then, for an arbitrary
vertex v of T, S(T) — v contains a perfect matching, where S(7') — v is the graph
obtained from S(7) by deleting v and the incident edges.
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3 3
€ €y

o O ) O O
e 2 € 4 € 5 € 2 € 4
(a) (b)

Figure 2. (a) The acyclic molecule S(7) — 1. (b) The acyclic molecule S(T — 5) — 1.

Proof. If n = 2 then T is a path with two vertices. It is trivial to show that
S(T) — v contains a perfect matching. Hence we may assume that n > 2 and
proceed by induction on n. We distinguish the following two cases:

(i) wv is a pendant vertex of T.

Since T contains at least two pendant vertices, we may suppose that # and
v are two pendant vertices of T. Let ¢ = (u,x) and e; = (v, y) be the two
pendant edges of T. Hence, by induction, S(7 —u) — v contains a perfect match-
ing, denoted by M. It is obvious that S(7)—v contains a perfect matching MU
{(u, e1)}. For the acyclic molecule T illustrated in figure 1(a), vertices 1 and 5 are
two pendant vertices, and e; = (1, 2) and e4 = (5, 4) are two pendant edges of T.
Note that S(T — 5) — 1 contains a perfect matching M| = {(2, ¢1), (3, e2), (4, e3)}
(see figure 2(b)). Hence S(T) — 1 contains a perfect matching M; U {(5, e4)} (see
figure 2(a)).

(ii) v is not a pendant vertex of 7.

Suppose that T — v has k components Ty, T», ..., Tx (k > 1). Then S(T) has
k components S(T; +v)—v for 1 <i < k. By Case (i), each S(7;+v)—v contains
a perfect matching. Hence S(T') — v contains a perfect matching.

Hence we have finished the proof of the lemma. m]

Theorem 3.2. Let T be an acyclic molecule with n vertices and v an arbitrary
vertex of T. Then

W(T,v) =m(S(T) —v,n —2), (16)
where W(T, v) is the partial Wiener index defined in (2).

Proof. 1f n = 2, it is trivial to show that the theorem holds. Hence we may
assume that n > 3 and proceed by induction on n. Without loss of generality, we
may assume that the neighbors of v in T are vy, va, ..., v and e} = (v, v1), e2 =
(v, v2),...,er = (v, v;). Hence T —v has k components, denoted by Ty, T5, ..., Tg,
where v; € V(T;) fori = 1,2,...,k (see figure 3(a)). Obviously, S(7) has k
components S(T1) + ey, S(Tr) + ez, ..., S(Ty) + e; (see figure 3(b)).
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Figure 3. (a) The acyclic molecule 7. (b) The acyclic graph S(T) — v.

By the definition of the partial Wiener index defined in (2), we have

k
W(T,v) = W(Ti +v,v), (17)

i=1

where T; +v=T-T1—-Th—---—T;_1— Ty —---—Tp fori =1,2,..., k. Note
that S(T;)+e¢; = S(T; +v) —v. Hence, by lemma 3.1, S(7;) +¢; contains a perfect
matching, which contains |V (7;)| edges. So we have

m(S(T) —v,n —2) =im(S(Ti)+ei,lV(Ti)| —D. (13)
i=1
Since v is a pendant vertex of 7; + v, for 1 <i < k we have
W(T; +v,v) = W(T;, v) + V(T (19)
By induction, we have
W(T;, vi) = m(S(Ty) — v, [V(T)] — 2). (20)
Note that we have

m(S(T) + e, [V(TH| = 1)
=m(S(T), [V(TH| — 1) +m(S(T}) — v, [V(T)| — 2). 21)

By corollary 3.1, m(S(T;), |V (T;)| — 1) = |V(T;)|. Thus, by (19) — (21), we obtain
the following:

m(S(T) +e;, |V(T)| — 1) = |[V(T)| + m(S(T;) — vi, |V(T})| = 2)
= |V(T)| + W(T;, v;) = W(T; + v, v). (22)

Hence (16) is immediate from (17), (18) and (22). The theorem thus follows. o
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4. The Wiener index of the acyclic molecule with a perfect matching

In Section 3, we explained the Wiener index of an acyclic molecule T with
n vertices as the number of matchings of S(7T) with n — 2 edges. In this section,
we show that if 7 has a perfect matching then the Wiener index of 7 can be
expressed in terms of m(S(T),i) for 1 < i < n — 3, that is, we have the follow-
ing:

Theorem 4.3. Let T be an acyclic molecule with n > 4 vertices, which contains a
perfect matching. Then

1 n—3 N
W(T) = 3n + gm(S(T), )22, (23)

Proof. Since T has a perfect matching, 7 must has the form showed in figure
4(a), where T is an acyclic molecule with n — 2 vertices, which contains a per-
fect matching. Hence S(7) has the form illustrated in figure 4(b). Note that the
characteristic polynomial ¢ (S(7T), x) of S(T) satisfies the following:

P (S(T), x) = ¢(S(T1), x)(x* = 3x* + 1) — ¢(S(T1) — v, x)(x* — 2x),

where v is illustrated in figure 4(b). Hence we have

$(S(T), v/2) = —p(S(T), V2). (24)
By induction on n, from (24) we can prove the following:
¢(S(T),v/2) =0. (25)
By (14) and (25), we have
n—1
> m(S(T), 2"+ =0. (26)

k=0

Note that, by theorem 3.1 and corollary 3.1, we have m(S(T),n — 1) = n and
m(S(T),n —2) = W(T). Hence (23) is immediate from (26). Thus the theorem
has been proved. o

Remark 4.1. The above result implies that if 7 is an acyclic molecule with »n ver-
tices and with a perfect matching then W(T) is even if and only if n = 0 (mod 4).
This result was previously found in [29-31].
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: : V @.
(a)

Figure 4. (a) The acyclic molecule 7. (b) The acyclic molecule S(T').

(b)

From the proof of theorem 4.3, we know that ¢(S(T), v/2) = 0. By (11),
we have u(T, 2) = 0, which implies the following:

Corollary 4.3 (Guo and Tan [32). If T is an acyclic molecule with a perfect
matching. Then 2 is a root of the Laplacian characteristic polynomial of 7.
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