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Connections between Wiener index and matchings
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Let T be an acyclic molecule with n vertices, and let S(T ) be the acyclic molecule
obtained from T by replacing each edge of T by a path of length two. In this work,
we show that the Wiener index of T can be explained as the number of matchings with
n − 2 edges in S(T ). Furthermore, some related results are also obtained.
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1. Introduction

The study of various molecular-graph-based structure descriptors, so-called
“topological indices” (see, for example, [1–3]), has been undergoing rapid expan-
sion in the last few years. Without question, the Wiener index is one of the best
known and most examined among them. The Wiener index of an acyclic mole-
cule T with the vertex set V (T ), denoted by W(T ), is defined as

W(T ) =
∑

{u,v}⊆V (T )

dT (u, v), (1)

where dT (u, v) is the distance between vertices u and v in T .
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The name Wiener index or Wiener number for the quantity defined in (1) is
usual in chemical literature, since Wiener [4] in 1947 seems to be the first person
that considered it. Wiener defined it in a slightly different yet equivalent way. He
used it to describe the variations in the number of physicochemical properties of
alkanes [4–8]; the definition of the Wiener index in terms of distances between
vertices of a graph, such as in (1), was the first given by Hosoya [9].

Suppose u is a vertex of T . The partial Wiener index was introduced in [10–
12] as follows:

W(T, u) =
∑

v∈V (T )

dT (u, v). (2)

It is well known [9] that the formula (1) is equivalent to the following
formula:

W(T ) =
∑

e

n1(e)n2(e), (3)

where e = (u, v) is an edge of T , and n1(e) (resp. n2(e)) is the number of verti-
ces of T lying closer to u than to v (resp. lying closer to v than to u), and the
summation is over all edges of T .

Based on the formula (3), it is natural to generalize the definition of W(T )

as follows.

Let U be a subset of the edge set E(T ) of an acyclic molecule T , and
let T − U be the acyclic graph obtained from T by deleting all edges in U .
Obviously, if |U | = i then T − U contains exactly i + 1 components, denoted by
U(T1), U(T2), . . ., U(Ti+1). Denote the number of vertices of U(Tj ) by nj (U) for
j = 1, 2, . . ., i + 1. Define the generalized Wiener indices Wi(T ) as

Wi(T ) =
∑

U⊆E(T ),|U |=i

n1(U)n2(U) · · · ni+1(U) (4)

for i = 0, 1, 2, . . ., n − 1, where the summation ranges over all subsets of E(T )

with i elements.

Obviously, W0(T ) = n, W1(T ) equals the Wiener index, and W2(T ) is the
modified hyper-Wiener index, which was introduced by Gutman [13]. It was
demonstrated that W2(T ) has certain advantages over the original hyper-Wiener
index introduced in Randić [14].

A set M of edges of an acyclic molecule T with n vertices is a matching if
every vertex of T is incident with at most one edge in M; it is a perfect matching
if every vertex of T is incident with exactly one edge in M. We use the notation
v ∈ M to mean that the vertex v is incident with some edge in M, and v /∈ M shall
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mean that the vertex v is not incident to any edge in M. For j = 0, 1, . . ., �n/2�,
the weighted j -matching number of T is defined to be

mT (j) =
∑

M

∏

v /∈M

d(v), (5)

where the summation is over all matchings with j edges of T and the product
ranges over all vertices which are incident with no edge in M, and d(v) is the
degree of the vertex v of T . Denote by m(T , i) the number of matchings of G

with i edges. We set m(T , 0) = 1 by convention. Denote by Z(T ) the number of
matchings of T , that is,

Z(T ) = m(T , 0) + m(T , 1) + · · · + m
(
T ,
⌊n

2

⌋)
.

The number of matchings of T is also called the Hosoya index (see Hosoya [9]).

The following interesting result was communicated around 1990 indepen-
dently in several papers [15–18]:

W(T ) = n

n−1∑

i=1

1
λi

, (6)

where T is an acyclic molecule with n vertices, λ1 � λ2 � · · · � λn−1 are the
non-zero Laplacian eigenvalues of T .

The above result connects the Wiener index (a quantity defined on the basis
of graph distances) and matrix eigenvalues. The possible chemical implications
of (6) were discussed in [19,20]. On the other hand, by using algebraic method,
Chan, Lam and Merris [21] arrived a related result, namely they expressed W(T )

as a linear function of a hook immanant of the Laplacian matrix of T . This
algebraic result was used to show that W(T ) is formally related to other graph
invariants of interest in chemistry [22]. It leads to a new interpretation of the
Wiener index as a weighted sum of matchings in the molecule as follows:

W(T ) = 1
4

⎛

⎝
�n/2�∑

j=0

χ3(j)mT (j) + 2n(n − 1)

⎞

⎠ , (7)

where χ3 is an irreducible character of the symmetric group indexed by a parti-
tion λ = (3, 1n−3) of n and by [19] we have χ3(j) = (−1)j

2 [(n−2j −1)(n−2j −2)−
2j ], and mT (j) equals the weighted j -matchings number of T defined in (5).

In addition to the formulas (1), (3), (6) and (7), many other formulas com-
puting the Winer index of an acyclic molecule were found (see, for example, ref.
[2, 3, 23–26]).

In this work, we mainly prove that if T is an acyclic molecule with n ver-
tices then Wi(T ) can be expressed in terms of the number of some matchings
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of a related acyclic molecule S(T ) with 2n − 1 vertices for i = 0, 1, 2, . . ., n − 1.
Particularly, the Wiener index W(T ) of T equals m(S(T ), n−2) and the modified
hyper-Wiener index W2(T ) of T equals m(S(T ), n − 3).

2. The subdivision graph of an acyclic molecule

Let T be an acyclic molecule with the vertex set V (T ) = {v1, v2, . . ., vn} and
the edge set E(T ) = {e1, e2, . . ., en−1}. The subdivision graph S(T ) is defined as
the acyclic molecule obtained from T by replacing each edge e = (u, v) of T by
a path uev of length two (figure 1(a) and (b) illustrate the procedure construct-
ing S(T ) from T ). Hence the vertex set of S(T ) is V (T ) ∪ E(T ). The vertex set
of T can be naturally regarded as a subset of the vertex set of S(T ).

Let B = (bij )n×(n−1) be the incidence matrix of T , where

bij =
{

1 if ej = (vi, ∼),

0 otherwise.

For the acyclic molecule T showed in figure 1(a), we have

B =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0

1 1 1 0

0 1 0 0

0 0 1 1

0 0 0 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

It is well known that the adjacency matrix of S(T ), denoted by A(S(T )),
has the following form (see [27]):

A(S(T )) =
(

0 B

BT 0

)
,

(a) (b)

Figure 1. (a) An acyclic molecule T . (b) The corresponding molecule S(T ) of T .
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where BT is the transpose of T . Particularly, we have

BBT = D + A, (8)

where D = diag(d1, d2, . . ., dn) is the diagonal matrix of vertex degrees of T and
A is the adjacency matrix of T . We call D − A the Laplacian matrix of T . The
Laplacian characteristic polynomial of T is u(T , x) = det(xIn − D + A). It can
be written in the coefficient form as:

µ(T , x) =
n∑

k=0

(−1)kckx
n−k, (9)

where cn = 0, cn−1 = n and c0 = 1.

According to the Kel’mans theorem [20, 27, 28], the coefficients cks of
µ(T , x) satisfy the following:

cn−k−1 = Wk(T ) (10)

for k = 0, 1, . . ., n − 1.

3. The generalized Wiener indices and matchings of S(T)

Let T be an acyclic molecule with n vertices. Then S(T ) is an acyclic mol-
ecule with 2n − 1 vertices.

Theorem 3.1. The generalized Wiener indices Wk(T ) of T and the numbers of
matchings of S(T ) with n − k − 1 edges are equal for k = 0, 1, 2, . . ., n − 1, that
is,

Wk(T ) = m(S(T ), n − k − 1).

Particularly, the Wiener index W(T ) of T equals m(S(T ), n−2) and the modified
hyper-Wiener index W2(T ) of T equals m(S(T ), n − 3).

Proof. Let B = (bij )n×(n−1) be the incidence matrix of T . Then the adjacency
matrix of S(T ) has the following form:

A(S(T )) =
(

0 B

BT 0

)
.

Hence the characteristic polynomial φ(S(T ), x) of S(T ) satisfies:

φ(S(T ), x) = det(xI2n−1 − A(S(T )))

= det

(
xIn −B

−BT xIn−1

)
= 1

x
det(x2In − BBT ).
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By (8), we have BBT = D + A. Hence we have

φ(S(T ), x) = 1
x

det(x2In − BBT ) = 1
x

det(x2In − D − A). (11)

Note that, since T is an acyclic molecule, it is a bipartite graph. Hence we have
(see [27])

u(T , x) = det(xIn − D + A) = det(xIn − D − A). (12)

By (11) and (12), we have

φ(S(T ), x) = 1
x

u(T , x2). (13)

Since S(T ) is an acyclic molecule, it is well known that the characteristic poly-
nomial φ(S(T ), x) can be expressed as [27]

φ(S(T ), x) =
n−1∑

k=0

(−1)km(S(T ), k)x2n−1−2k, (14)

where m(S(T ), k) denotes the number of matchings of S(T ) with k edges.

From (9), (10), (13) and (14), we have

Wk(T ) = m(S(T ), n − k − 1).

Hence the theorem has been proved.

From the above result, we have the following:

Corollary 3.1. Let T be an arbitrary acyclic molecule with n vertices. Then the
number of matchings of S(T ) with n− 1 edges is n, which is independent of the
structure of T .

Corollary 3.2. Let T be an arbitrary acyclic molecule with n vertices. Then the
Hosoya index of S(T ) equals (−1)nu(T , −1), that is,

Z(S(T )) = (−1)nu(T , −1) =
n−1∑

k=0

Wk(T ). (15)

Now we consider the relation between the partial Winer index of an acyclic
molecule and the matchings of S(T ).

Lemma 3.1. If T is an acyclic molecule with n � 2 vertices, then, for an arbitrary
vertex v of T , S(T )− v contains a perfect matching, where S(T )− v is the graph
obtained from S(T ) by deleting v and the incident edges.
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(a) (b)

Figure 2. (a) The acyclic molecule S(T ) − 1. (b) The acyclic molecule S(T − 5) − 1.

Proof. If n = 2 then T is a path with two vertices. It is trivial to show that
S(T ) − v contains a perfect matching. Hence we may assume that n > 2 and
proceed by induction on n. We distinguish the following two cases:

(i) v is a pendant vertex of T .

Since T contains at least two pendant vertices, we may suppose that u and
v are two pendant vertices of T . Let e1 = (u, x) and e2 = (v, y) be the two
pendant edges of T . Hence, by induction, S(T −u)−v contains a perfect match-
ing, denoted by M1. It is obvious that S(T )−v contains a perfect matching M1 ∪
{(u, e1)}. For the acyclic molecule T illustrated in figure 1(a), vertices 1 and 5 are
two pendant vertices, and e1 = (1, 2) and e4 = (5, 4) are two pendant edges of T .
Note that S(T − 5) − 1 contains a perfect matching M1 = {(2, e1), (3, e2), (4, e3)}
(see figure 2(b)). Hence S(T ) − 1 contains a perfect matching M1 ∪ {(5, e4)} (see
figure 2(a)).

(ii) v is not a pendant vertex of T .

Suppose that T − v has k components T1, T2, . . ., Tk (k > 1). Then S(T ) has
k components S(Ti +v)−v for 1 � i � k. By Case (i), each S(Ti +v)−v contains
a perfect matching. Hence S(T ) − v contains a perfect matching.

Hence we have finished the proof of the lemma.

Theorem 3.2. Let T be an acyclic molecule with n vertices and v an arbitrary
vertex of T . Then

W(T, v) = m(S(T ) − v, n − 2), (16)

where W(T, v) is the partial Wiener index defined in (2).

Proof. If n = 2, it is trivial to show that the theorem holds. Hence we may
assume that n � 3 and proceed by induction on n. Without loss of generality, we
may assume that the neighbors of v in T are v1, v2, . . ., vk and e1 = (v, v1), e2 =
(v, v2), . . ., ek = (v, vk). Hence T −v has k components, denoted by T1, T2, . . ., Tk,
where vi ∈ V (Ti) for i = 1, 2, . . ., k (see figure 3(a)). Obviously, S(T ) has k

components S(T1) + e1, S(T2) + e2, . . ., S(Tk) + ek (see figure 3(b)).
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(a) (b)

Figure 3. (a) The acyclic molecule T . (b) The acyclic graph S(T ) − v.

By the definition of the partial Wiener index defined in (2), we have

W(T, v) =
k∑

i=1

W(Ti + v, v), (17)

where Ti + v = T − T1 − T2 − · · · − Ti−1 − Ti+1 − · · · − Tk for i = 1, 2, . . ., k. Note
that S(Ti)+ei = S(Ti +v)−v. Hence, by lemma 3.1, S(Ti)+ei contains a perfect
matching, which contains |V (Ti)| edges. So we have

m(S(T ) − v, n − 2) =
k∑

i=1

m(S(Ti) + ei, |V (Ti)| − 1). (18)

Since v is a pendant vertex of Ti + v, for 1 � i � k we have

W(Ti + v, v) = W(Ti, vi) + |V (Ti)|. (19)

By induction, we have

W(Ti, vi) = m(S(Ti) − vi, |V (Ti)| − 2). (20)

Note that we have

m(S(Ti) + ei, |V (Ti)| − 1)

= m(S(Ti), |V (Ti)| − 1) + m(S(Ti) − vi, |V (Ti)| − 2). (21)

By corollary 3.1, m(S(Ti), |V (Ti)|− 1) = |V (Ti)|. Thus, by (19)− (21), we obtain
the following:

m(S(T ) + ei, |V (Ti)| − 1) = |V (Ti)| + m(S(Ti) − vi, |V (Ti)| − 2)

= |V (Ti)| + W(Ti, vi) = W(Ti + v, v). (22)

Hence (16) is immediate from (17), (18) and (22). The theorem thus follows.
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4. The Wiener index of the acyclic molecule with a perfect matching

In Section 3, we explained the Wiener index of an acyclic molecule T with
n vertices as the number of matchings of S(T ) with n − 2 edges. In this section,
we show that if T has a perfect matching then the Wiener index of T can be
expressed in terms of m(S(T ), i) for 1 � i � n − 3, that is, we have the follow-
ing:

Theorem 4.3. Let T be an acyclic molecule with n � 4 vertices, which contains a
perfect matching. Then

W(T ) = 1
2
n +

n−3∑

i=0

m(S(T ), i)2n−i−2. (23)

Proof. Since T has a perfect matching, T must has the form showed in figure
4(a), where T1 is an acyclic molecule with n − 2 vertices, which contains a per-
fect matching. Hence S(T ) has the form illustrated in figure 4(b). Note that the
characteristic polynomial φ(S(T ), x) of S(T ) satisfies the following:

φ(S(T ), x) = φ(S(T1), x)(x4 − 3x2 + 1) − φ(S(T1) − v, x)(x3 − 2x),

where v is illustrated in figure 4(b). Hence we have

φ(S(T ),
√

2) = −φ(S(T1),
√

2). (24)

By induction on n, from (24) we can prove the following:

φ(S(T ),
√

2) = 0. (25)

By (14) and (25), we have

n−1∑

k=0

m(S(T ), k)2n−1−k = 0. (26)

Note that, by theorem 3.1 and corollary 3.1, we have m(S(T ), n − 1) = n and
m(S(T ), n − 2) = W(T ). Hence (23) is immediate from (26). Thus the theorem
has been proved.

Remark 4.1. The above result implies that if T is an acyclic molecule with n ver-
tices and with a perfect matching then W(T ) is even if and only if n = 0 (mod 4).
This result was previously found in [29–31].
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(a) (b)

Figure 4. (a) The acyclic molecule T . (b) The acyclic molecule S(T ).

From the proof of theorem 4.3, we know that φ(S(T ),
√

2) = 0. By (11),
we have u(T , 2) = 0, which implies the following:

Corollary 4.3 (Guo and Tan [32). If T is an acyclic molecule with a perfect
matching. Then 2 is a root of the Laplacian characteristic polynomial of T .
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